Adaptive evolution of proteins secreted during sperm maturation: an analysis of the mouse epididymal transcriptome.
نویسندگان
چکیده
A common pattern observed in molecular evolution is that reproductive genes tend to evolve rapidly. However, most previous studies documenting this rapid evolution are based on genes expressed in just a few male reproductive organs. In mammals, sperm become motile and capable of fertilization only after leaving the testis, during their transit through the epididymis. Thus, genes expressed in the epididymis are expected to play important roles in male fertility. Here, we performed evolutionary genetic analyses on the epididymal transcriptome of mice. Overall, epididymis-expressed genes showed evidence of strong evolutionary constraint, a finding that contrasts with most previous analyses of genes expressed in other male reproductive organs. However, a subset of epididymis-specialized, secreted genes showed several signatures of adaptive evolution, including an increased rate of nonsynonymous evolution. Furthermore, this subset of genes was overrepresented on the X chromosome. Immunity and protein modification functions were significantly overrepresented among epididymis-specialized, secreted genes. These analyses identified a group of genes likely to be important in male reproductive success.
منابع مشابه
Assessment of Sialic Acid Distribution in Mouse Epididymis
Previous studies have shown that epididymal epithelium and its secretions are critical for sperm maturation. These secretions contain many glycoconjugates with sialic acid terminal sugar. This terminal sugar by interveining in cellular interactions and masking surface receptors, has an important role in sperm maturation and protection. Moreover lectins have been employed as useful probes to det...
متن کاملEpididymosomes are involved in the acquisition of new sperm proteins during epididymal transit.
During epididymal transit, spermatozoa acquire new proteins. Some of these newly acquired proteins behave as integral membrane proteins, including glycosylphosphatidylinositol (GPI)-anchored proteins. This suggests that the secreted epididymal proteins are transferred to spermatozoa by an unusual mechanism. Within the epididymal lumen, spermatozoa interact with small membranous vesicles named e...
متن کاملTargeted inactivation of the mouse epididymal beta-defensin 41 alters sperm flagellar beat pattern and zona pellucida binding.
During epididymal maturation, sperm acquire the ability to swim progressively by interacting with proteins secreted by the epididymal epithelium. Beta-defensin proteins, expressed in the epididymis, continue to regulate sperm motility during capacitation and hyperactivation in the female reproductive tract. We characterized the mouse beta-defensin 41 (DEFB41), by generating a mouse model with i...
متن کاملCharacterizing mouse male germ cell-specific actin capping protein α3 (CPα3): dynamic patterns of expression in testicular and epididymal sperm
Aim: To characterize mouse capping protein α3 (CPα3) during spermatogenesis and sperm maturation. Methods: We produced rat anti-CPα3 antiserum and examined the expression of CPα3 in various mouse tissues using Western blot analysis and the localization of CPα3 in testicular and epididymal sperm using immunohistochemical analyses. We also examined how the localization of CPα3 and β-actin (ACTB) ...
متن کاملRegion-specific localization of IMDS-60 protein in mouse epididymis and its relationship with sperm maturation.
Spermatozoa acquire forward motility and fertilizing capacity during their transit through the epididymis. This maturation process involves modifications of the sperm surface by different proteins secreted by a series of specialized regions in the epididymal epithelium. Previously, our lab has reported IMDS-60 gene, which is highly expressed in mouse corpus and cauda epididymidis. Here, to perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2008